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FRAMEWORK FOR INSTRUCTIONAL TECHNOLOGY: METHODS OF IMPLEMENTING 
ADAPTIVE TRAINING AND EDUCATION 
 
 
EXECUTIVE SUMMARY 
 

Research Requirement: 

As outlined in the Army Learning Concept 2015 (ALC 2015), Army training and 
education is undergoing a transformation to a learner-centric model.  As this occurs, learning 
outside the classroom will play an increasingly key role. Innovative learning technologies and 
methods will be required to make self-directed learning effective and efficient.  One of the items 
in the ALC 2015 Action Plan is: identify state-of-the-art adaptive training and digital tutor 
capabilities, and develop standards, protocols, and guidance on employing these capabilities in 
interactive multimedia instruction (IMI) modules.  

Procedure: 

 Adaptive instructional technology can be implemented in a myriad of ways.  There does 
not appear to be a standard terminology for describing the various possible implementations. 
Digital tutors are considered the epitome of adaptive instructional technology; however, different 
tutors are implemented in different ways.  Moreover, there are adaptive tactics that may be just 
as effective as those typically used by digital tutors, but less technically difficult to implement.  
In this report, we examined the literature on adaptive instructional technology and created a 
framework that allows comparison of many of the potential adaptive techniques.  We also 
considered how the various techniques could be used in combination with different levels of IMI. 

Findings: 

 The Framework for Instructional Technology (FIT) lays out four categories of adaptive 
techniques: Corrective Feedback, Support, Micro-sequencing, and Macro-sequencing.  
Corrective Feedback covers methods for responding to incorrect responses.  Support covers 
methods of providing support, cues, hints, and prompts.  Micro-sequencing covers methods of 
remediation, given that a performance criterion has not been met.  Finally, macro-sequencing 
covers how the sequencing of lessons or modules is determined (once mastery has been met in 
one module, what next?).  Under each category, FIT specifies five “levels” or approaches to 
adapting.  These levels roughly correspond to the degree of adaptive sophistication and 
complexity of implementation.  Whereas for corrective feedback, support, and micro-sequencing, 
the instructional designer must select one level to use, macro-sequencing is somewhat different.  
For macro-sequencing, the levels are not mutually exclusive and can be combined in various 
ways.  For each category, we examined the status of the empirical evidence as to whether it 
would justify selection of a more complex over a less complex form of implementation.  In the 
case of Corrective Feedback, the evidence quite clearly justifies recommending the use of error-
sensitive feedback; however, for the other categories, evidence supporting the use of higher 
levels of adaptation is lacking.  The appropriate systematic comparison of different 
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implementation approaches has simply not been conducted.  The report provides 
recommendations for combining different levels of FIT with different levels of IMI (see Tables 8 
and 9). 

Utilization and Dissemination of Findings: 

 There are two primary uses of FIT.  The first is to serve as a guideline to instructional 
designers or for those procuring instructional technology.  FIT can be used as a method of clearly 
specifying the adaptive behaviors that a new instructional system should manifest.  The second 
use is to serve as a framework for future research on the efficacy of different adaptive 
techniques.  As previously mentioned, the evidence to justify the use of certain adaptive methods 
(such as Level III Adaptive Content Micro-sequencing—typically used by digital tutors), over 
other less complex approaches (e.g., Level I or II Micro-sequencing) is lacking.  This is because 
much empirical research in educational technology compares the effects of multiple adaptive 
features against no adaptive features.  This makes it impossible to determine the relative 
contribution of the different features, when beneficial effects on learning outcomes are achieved.  
Research should be conducted holding constant all factors except for a single level of a single 
FIT category, in order to determine the relative efficacy of the two levels. 

 An earlier, slightly different version of FIT was presented at Applied Digital Human 
Modeling 2012, San Francisco, as part of the International Conference on Applied Human 
Factors and Ergonomics in July 2012, and published as Durlach and Spain (2012).  FIT was also 
presented in a talk at The Advanced Distributed Learning Initiative’s iFest, August 2012.  
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FRAMEWORK FOR INSTRUCTIONAL TECHNOLOGY:  
METHODS OF IMPLEMENTING ADAPTIVE TRAINING AND EDUCATION 

 
INTRODUCTION 

 
Over the past two decades, digital learning environments have extended traditional 

methods of instruction within the Department of Defense’s (DOD) educational and training 
strategy.  Digital learning environments provide not only education, but also training and skill 
application to learners distributed across the globe in controlled and safe environments, using 
simulations and games.  More recently, the DOD has embraced the idea that interactive 
multimedia instruction (IMI) should be more learner-centric.  One of the implications is that 
future technology-enabled learning environments should adapt themselves to the needs, 
understanding, and experience of the learner.  In addition, those environments should integrate 
advances in learning science and evidence-based pedagogical methods (Fautua, Schatz, Reitz, & 
Killilea, 2012; TRADOC, 2011).  

 
Adapting instructional content or strategy to the needs and ability of the learner can be 

done in many different ways.  Adaptive interventions are possible whenever there is information 
about or input from the learner, collected either prior to or during the course of learning.  Both 
the data used and the system’s adaptive response involve design decisions such as: How will the 
system capture the necessary data about the student?  What data are required and how should 
they be interpreted?  How should the system respond to the different possible interpretations? 
When should it respond—during or after exercise completion?  The range of possible adaptive 
behaviors is large; but most systems only incorporate a few.  Those that are incorporated and 
how they are implemented is typically based on a combination of knowledge of learning science, 
craft, intuition, time, and resources.  The main purpose of this report is to lay out a framework 
that outlines a range of possibilities.  Our focus is primarily on the adaptive behavior of the 
instructional system –i.e., how the system responds to different student inputs and characteristics. 
This necessitates some discussion of the student information considered; however, a detailed 
discussion of the collection and processing of data used to inform adaptive decisions is beyond 
the scope of this report.  The interested reader is directed to Behrens, Mislevy, Dicerbo, and 
Levy (2010), Desmarais and Baker (2012), and Shute and Kim (2013). 

 
Adaptive design decisions are implemented for the potential benefits they may produce 

for learning speed, learner satisfaction, mastery and transfer; but they almost invariably increase 
the resources required for implementation.  Consequently, there is a practical need to consider 
return on investment when selecting whether and how to adapt.  To address this need, discussion 
of the framework includes comments regarding the existence of empirical evidence concerning 
learning outcomes.  To foreshadow the discussion, the empirical evidence is sparse.  Therefore 
an additional use of the framework should be to guide future empirical research by outlining the 
critical conditions that should be compared. 
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EXISTING TERMINOLOGY DESCRIBING ADAPTIVE  
TECHNOLOGY-BASED INSTRUCTION 

 
Before presenting our framework, we will briefly define several key terms and review 

various existing frameworks that impose some organization on the range of potential adaptive 
behaviors a technology-enabled learning environment might display.  
 
Adaptive Instruction 
 

In this report we refer to adaptive instruction as training or education in which content, 
feedback, scaffolding, or support is tailored to an individual learner’s aptitudes, learning 
preferences, or styles, either before instruction, or in real-time during instruction, with the aim of 
enhancing learning outcomes (Landsberg, Astwood, Van Buskirk, Townsend, Steinhauser, & 
Mercado, 2012; Shute & Zapata-Rivera, 2008).  Human tutoring is the epitome of adaptive 
instruction.  An ideal human tutor combines what they know about the student, effective 
instruction, and the subject to dynamically adapt instruction based on the perceived needs of the 
student.  The tutor may give hints or guiding questions to stimulate dialog about the topic; they 
may give different kinds of feedback based on how close or far away a student’s response is 
from being correct; likewise, they may use knowledge about the student’s strengths and 
weaknesses to assign remedial content or exercises.  The education benefits of one-on-one 
tutoring are clear: students working with a good tutor obtain higher achievement levels compared 
to students who receive instruction in a conventional classroom (Bloom, 1984).  For this reason, 
many educational researchers and instructional technologist have looked for ways to replicate the 
benefits of one-on-one tutoring in adaptive instructional environments. 
 

Intelligent tutoring systems (ITS) are the closest technological analogue of one-to-one 
human tutoring.  These systems differ from traditional forms of computer-mediated instruction in 
that they reason about what, when, and how to teach while providing one-to-one individualized 
instruction (Woolf, 2009).  These decisions are typically arrived at through use of various 
artificial intelligence models, such as a: student model, which maintains an estimate of the 
student’s knowledge, skills, and abilities; domain model, which contains information about the 
training topic and how experts solve problems within the domain; and pedagogical model, which 
uses information from the student and domain model to prescribe different tutoring strategies.  It 
is important to note not all ITS are created equal - some are more “intelligent” than others, 
meaning they encode more information and logic about the student, domain, and tutoring 
strategy in these models than others (Shute & Psotka, 1996).  For example, some ITS may only 
provide feedback and hints based on an isolated student action or input without taking 
information from the student model into account.  Others may maintain a rich database of student 
interactions and use this information to prescribe tailored instructional interventions. 

 
Ideally, anything and everything that is known about the student, and that could influence 

their learning, should be considered when making adaptive instructional decisions (i.e., how, 
what, and when to make an adaptation).  Of course, in reality, the full gamut of information is 
not available, and decisions are made on the basis of a simplified model of reality, based on the 
information that is available.  They are also made on the basis of feasibility, such as whether 
software can be made intelligent enough to detect student state and respond appropriately, or 
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whether instructional environment actually has the time and resources to implement an adaptive 
strategy.  For this reason, in this paper we discuss various ways and approaches in which 
adaptive instruction can be achieved; some approaches are relatively low on the continuum of 
adaptive training and range from using assessment scores to determine which training module a 
student should take next to tailoring the training content based on a learner’s preferences.  Others 
are more complicated and rely on robust student modeling to deliver prescribed feedback, hints, 
and support to students based on a contextual understanding of the student’s needs.  In the 
following sections, we review several existing rubrics that categorize the different behaviors of 
adaptive instructional environments.  These concepts and terms are important for understanding 
the range of possible adaptive behaviors.   
 
Macro and Micro Adaptation  
 

Shute (1993) and Park and Lee (2004) describe adaptive systems as being either macro-
adaptive or micro-adaptive, although a single system could contain aspects of both.  Macro-
adaptation uses pre-task measures or historical data to adapt content before the instructional 
experience begins.  There are three general macro-adaptive approaches: Adaptation-as-
Preference, Role Adaptation, and Mastery.  With Adaptation-as-Preference, learner preferences 
are collected before training and this information is used to provide personalized training 
content.  For example, it may determine whether a student watches a video or reads; or whether 
examples are given with surface features about sports, business, or the military.  With Role 
Adaptation, trainees select their role (e.g., tank driver vs. tank gunner) and are then presented 
with different subsets of the content according to the role’s learning objectives.  With Mastery 
macro-adaptation, a pretest determines the starting point of instruction (allowing already 
mastered material to be skipped). 

 
Micro-adaptive systems respond to trainee data in a dynamic fashion.  These systems 

perform on-going adaptations during the learning experience, based upon the performance of the 
learner or other behavioral assessment (e.g., frustration, boredom).  They may use a pattern of 
response errors, response latencies, and/or emotional state to identify student problems or 
misconceptions.  Micro-adaptive moves may be aimed at correcting specific errors and their 
underlying cause.  They may also provide support, such as giving hints or encouragement, or by 
eliciting reflection.  

 
Inner-Loop and Outer-Loop  

 
VanLehn’s (2006) description of the behavior of ITS has popularized the use of the terms 

inner and outer-loops.  The inner-loop is responsible for providing within problem guidance or 
feedback, based on the most recently collected input.  The outer loop is responsible for deciding 
what task a student should do next, once a problem has been completed.  Figure 1 illustrates the 
functioning of the inner (dashed lines) and outer (solid lines) loops.  In this figure, the student 
has responded correctly to the item, and received confirmation with the “Good” feedback 
message via the inner loop.  In ITS, data collected during inner-loop student-system interactions 
are used to update a student model representing the student’s evolving competence.  
Comparisons of the student model with a domain model drive the outer loop decision process, 
tailoring selection of the next problem.  Selection of the problem is based on the student’s 
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relative grasp of the different learning objectives targeted in that module of instruction, with the 
aim of keeping the student at the right level of challenge.  This necessitates problems being 
assigned different weights for the knowledge components (i.e., concepts, facts, principles, or 
procedures) required to solve them.  It is this “intelligent” selection of the next problem that sets 
ITS apart from less adaptive systems, which may present problems in a fixed order, or in a 
random order.  Reflecting back on the macro- and micro-adaptive characterization, the inner- and 
outer-loop processes are both micro-adaptive, because they use data collected during the course 
of learning. 
 

 
 

Figure 1.  Schematic illustration of the inner loop (dashed lines) and the outer loop (solid lines), 
typical of ITS. 

 
Granularity and Steps 

 
ITS and other tutoring systems can also be characterized by the granularity of student 

interaction with the system. VanLehn (2011) distinguished four levels of granularity: none, 
answer-based, step-based, and substep-based. These levels correspond to the number of 
opportunities students have to interact with the tutoring system when solving a problem. With 
none, the student performs the required problem solving activity (multiple steps), with no system 
intervention. With answer-based, the student completes a problem and then submits the solution. 
Once the solution is submitted (or an activity is completed, say, for simulation-based training), 
the tutor provides feedback on whether the final answer is correct or not. If the answer is correct 
the student may be presented with a new problem. If the answer is incorrect the student may get 
another chance to resubmit his or her answer (or complete the task). Systems like these generally 
lack an inner loop or what Heffernan, Koedinger and Razzaq (2008) refer to as the knowledge 
search loop.  These systems may assign the student a task, collect the student’s answer, give 
them feedback on their answer, and continue either by giving the student another chance to solve 
the problem or by going on to a new one; however, they do not provide step-based instructional 
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support (i.e., they do not assist the student in identifying why an answer was incorrect). Systems 
that lack an inner loop are sometimes referred to as learning content management systems, 
computer-aided instruction, or web-based homework systems (VanLehn, 2011).   
 

Step-based and sub-step-based systems represent a finer level of granularity.  With step-
based systems, the student can receive guidance or feedback on each step of the solution.  This is 
enabled by repetitive iterations of the inner loop, one for each step, until the problem is complete 
(VanLehn, 2011).  The interface is typically designed specifically to support the student entering 
steps, and students may be able to request hints to get advice at each specific step.  After each 
step they may receive some feedback.  The granularity is finer because student’s entries and the 
system’s hints and feedback refer to a relatively smaller application of knowledge (the step), 
compared with answer-based systems (VanLehn, 2011).  A step-based system can also be 
designed to provide feedback only after a complete answer is submitted.  It is still considered 
step-based if the steps of the problem are reviewed in the feedback, enabling the student to see 
where their errors were committed (if any).  Thus, a scenario-based instructional simulation with 
an after action review that presents what the student did right and what they did wrong, would be 
analogous to a step-based system, whereas one that simply gave them a score would be 
analogous to an answer-based system.  

 
The level of support given in a substep-based system is even finer than step-based.  

Substep-based systems tend to use natural language interfaces, enabling a student-system dialog 
on each step; for example, a pedagogical agent may follow up a partially correct step asking the 
student a probing question, initiating a multi-turn dialog that results in the student analyzing their 
input and correcting it.  In terms of effectiveness, VanLehn, 2011) suggested that substep-based 
and step-based systems were about equally effective, but more effective than answer-based, 
which in turn were more effective than none. 

 
THE FRAMEWORK FOR INSTRUCTIONAL TECHNOLOGY 

 
The preceding discussion illustrated that there are different varieties of micro-adaptation.  

These include methods for supporting student learning during the problem solving process, as 
well as methods for selecting what the next problem should be.  The Framework for Instructional 
Technology (FIT)1 aims to better differentiate potential implementations of these processes, and 
also to add the notion of between-module adaptation.  FIT is organized around three important 
pedagogical tactics: corrective feedback, support, and mastery.  Each of these is explained in 
greater detail later; for a primer, corrective feedback refers to post-response information that 
aims to help students repair misconceptions in their thinking or behavior.  Support refers to any 
type of instructional scaffolding (e.g., hints, pumps, instructional diagrams, etc.) that is used to 
help a student master a concept or topic.  Mastery refers to a pedagogical technique that tailors 
the instructional content to the student’s current level of understanding; it requires students to 
demonstrate mastery of an exercise or topic before proceeding to the next, more advanced one.  
As a technique, mastery learning involves two basic decisions, as illustrated in Figure 2: What to 
do when a student reaches mastery, and what to do when a student fails to reach mastery.  FIT 
attempts to parse these decision-points into two unique tactics: micro-sequencing and macro-
                                                 

1 As presented here, FIT is a slightly modified and improved version of the framework as originally presented in 
Durlach and Spain (2012). 
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sequencing.  Micro-sequencing determines what to do next when a student needs remediation; 
macro-sequencing determines what to do once current topic mastery has been attained. 

 

 
 

Figure 2.  Illustration of the two decisions a system must make when mastery learning is 
implemented.  When performance is below mastery (left) the system has to decide what learning 
activity should occur to bring the student closer to mastery.  When performance is at or above 
mastery (right) the system has to decide what module to present next.  

 
Figure 3 illustrates where these four tactics (feedback, support, micro-sequencing, and 

macro-sequencing) occur during the course of learning, in a schema analogous to Figure 1. 
Inspection of Figure 3 shows that feedback and support are inner-loop processes, whereas task 
selection, which was analogous to VanLehn’s (2006) outer loop, is now controlled by micro-
sequencing.  More specifically, micro-sequencing controls the selection of activities within a 
lesson or module when mastery has not been reached.  To this structure FIT adds a third loop 
called macro-sequencing.  Macro-sequencing is like micro-sequencing, but at a higher level of 
analysis.  Given that a student has mastered the learning objectives covered by a particular 
module of instruction, the macro-sequencing decision determines what module he or she should 
do next.  In summary, micro- and macro-sequencing have to do with the sequencing of events, 
either within a lesson (micro) or across lessons (macro).  Corrective feedback and support are 
more granular and provide within problem guidance, either at the answer, step, or sub-step level. 

 
For each of these four tactics (corrective feedback, support, micro-sequencing, and 

macro-sequencing) FIT presents a range of potential ways that each can be implemented in 
technology-based instructional systems.  Specifically, for each of these tactics, FIT lays out five 
different “levels” of adaptivity.  These levels roughly correspond to the complexity of the 
underlying data structures needed to support the implementation, although in some cases, 
different methods of implementation do not fall along such a clear continuum (macro-sequencing 
in particular).  
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Figure 3.  Illustration of where feedback, support, micro-sequencing, and macro-sequencing 
occur during the instructional process. 

 
Corrective Feedback 

 
It is well accepted that feedback is important for learning (Azevedo & Bernard, 1995; 

Hays, 2005; Jaehnig & Miller, 2007), yet there is still some debate concerning the most effective 
methods for providing it (e.g., see Hattie & Timperley, 2007; Hays, Kornell, & Bjork, 2013; 
Kluger & DeNisi, 1998; Schmidt & Bjork, 1992).  It may be that the effectiveness of feedback 
depends on the type of task or the current state of student knowledge or ability (Van Dijk & 
Kluger, 2011).  For example, Forbes-Riley and Litman (2011) found that adapting feedback 
content on the basis of student certainty (as well as accuracy) resulted in better post-test 
performance (compared with when feedback content was based on accuracy alone).  Specifically, 
students who received different feedback content when they were correct, but uncertain, 
compared with when they were correct and certain, performed better on a posttest than students 
who got the same (positive) feedback for every correct response.   

 
Feedback providing knowledge of results (both positive and negative) can be beneficial.  

Positive feedback can be motivating and reduce uncertainty.  A critical role of feedback is to 
support the student in comparing his or her own performance with what good performance looks 
like, and enabling students to use this information to close that gap (Sadler, 1989).  In general, 
the more fine-grained the feedback, the more likely it is to fit these requirements.  A summary 
grade provides an evaluation, but does not go very far in helping the student “close the gap.”  
(VanLehn, 2011) suggested that providing feedback in a way that allows students to self-correct 
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may be the most effective method of enhancing learning outcomes.  Because we are concerned 
with “closing the gap,” FIT concentrates on corrective feedback.  

 
FIT is concerned with explicit corrective feedback, as opposed to the implicit feedback. 

Explicit feedback refers to information a student receives from an external source such as an 
instructor, system, or artificial agent that intends to inform the student how he or she performed 
on a task (Narciss, 2008).  Receiving a message from an instructional environment about why an 
answer is incorrect is a form of explicit feedback.  Implicit feedback, on the other hand, refers to 
information inherent in a scenario, task, or environment that may be used to determine the 
accuracy of a student’s decision or input (Narciss, 2008).  There is no agent or system that 
explicitly tells the student if his or her actions were correct or incorrect; rather this must be 
inferred based on changes to the environment or the goals of the task.  We believe it is important 
to distinguish between these two forms of feedback to better understand the differences between 
interactive and adaptive instructional environments.  

 
Both interactive and adaptive instructional environments alter their behaviors on the basis 

of student input.  As we see it, the distinction between them concerns whether the system 
reaction is based on an evaluation of the student input (adaptive) or not (interactive).  For 
example, in a driving simulator, stepping on the brake slows down the apparent motion of the 
vehicle in the virtual world, without making any evaluation of whether stepping on the brake was 
the correct thing to do.  This is an example of interaction, but not adaptation.  This type of 
interaction provides implicit feedback, which can be instructionally beneficial if it is noticed and 
interpreted by the student as resulting from his or her input; but the implicit feedback is 
generated by a vehicle simulation model that is indifferent to the correctness of stepping on the 
brake.  An instructionally adaptive reaction, in contrast, would be one that evaluates the student 
input and produces a response based on that evaluation.  In the current example, an adaptive 
response would be a feedback message praising the student for slowing down under low 
visibility conditions.  According to FIT, any explicit feedback is a form of adaptation.  As we 
will explain in the next section, however, it can be given in a variety of ways, depending on the 
richness of the information used for evaluation and/or provided in the feedback.  

 
Table 1 presents steps on a continuum of corrective feedback in which error diagnosis 

and corrective information increase as one reads down the table.  It illustrates how different 
forms of corrective feedback can be applied if a student were to err on the question posed in 
Figure 4.  As shown in Table 1, the simplest explicit feedback is “minimal feedback.”  Minimal 
feedback simply indicates whether a response is correct or incorrect.  In Sadler’s terms (1989), it 
tells students whether there is a gap, but it does not tell them how to close it.  When accuracy 
data are supplemented with more explanatory information, the feedback becomes more effective 
(e.g., Billings, 2012).  More rich than minimal feedback, correct answer feedback tells the 
student what the correct response should be.  This may be supplemented further with an 
explanation as to why it is correct (correct answer explanation).  If the explanation also takes into 
account how the student erred, it is referred to as error-sensitive feedback.  Error-sensitive 
feedback tells the student why his or her response is wrong, with the intention of repairing the 
error, and is therefore the most aligned with Sadler’s prescription from among the options listed.  
With error-sensitive feedback, if a student incorrectly chooses B instead of A on a question, the 
feedback would explain why B is incorrect and the difference between A and B.  For a different 
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student erring by selecting C, the feedback would explain why C is incorrect and the difference 
between A and C.  

 
Table 1. Types of Locally-Adaptive Corrective Feedback  

 
Effectiveness Feedback type Description Example Feedback 

if student responds 
b. True Morel 

Example Feedback if 
student responds c. 
Coral Fungus 

Low Minimal 
Feedback 

Tells whether a 
response was 
correct or 
incorrect 

Incorrect Incorrect 

Low Correct Answer  Provides 
correct answer 

No, this is a False 
Morel 

No, this is a False Morel 

Medium  Explanation of 
correct answer 

Explains why 
the correct 
answer is 
correct.  

No, this is a False 
Morel.  False Morels 
have asymmetric caps 
that bulge to one side 
and the cap is not 
attached to the stem.  
It has wavy fissures 
like a brain.  

No, this is a False 
Morel.  False Morels 
have asymmetric caps 
that bulge to one side 
and the cap is not 
attached to the stem.  It 
has wavy fissures like a 
brain. 

High Error-Sensitive 
Feedback 

Attempts to 
correct specific 
error 
committed; 
compares and 
contrasts 
correct and 
chosen 
response.  

This is not a True 
Morel, it is a False 
Morel.  (Display 
pictures of true and 
false morels).  Notice 
that True Morels 
have a cap that is 
symmetrical and 
longer than the stem.  
In contrast, the cap of 
a false morel bulges 
to one side and is not 
attached to the stem. 

This is not a Coral 
Fungus, it is a False 
Morel. (Display pictures 
of coral fungus and false 
morel).  Notice that the 
coral fungus has 
branchlike angular 
spines.  The false morel 
has wavy fissures like a 
brain.   
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Figure 4.  Example of a multiple-choice question.  The correct answer is a Poisonous False 
Morel.  See Table 1 for potential methods of giving feedback to erroneous responses. 

 
The forms of explicit feedback listed in Table 1 are “locally-adaptive.”  They are 

adaptive because the feedback provided depends on an evaluation of the student response.  They 
are local because the feedback given takes into account student data from a single point in time 
(Durlach & Ray, 2011).  For an answer-based tutoring system this response could be the 
student’s final answer; for a step-based tutoring system this could be their input on a step.  
Locally-adaptive feedback can take into account more than accuracy (e.g., it could also consider 
reaction time or certainty).  What makes it local is that the decision regarding what feedback to 
present uses data collected from one point in time.  This is usually the most recent student input. 
It does not consider any historical, previously stored information about the student or student-
system interactions.  Empirical research suggests that error-sensitive feedback is the most 
effective form of locally-adaptive feedback (Durlach & Ray, 2011).  Although it takes more 
effort and resources to create (because different ways of erring must be followed up with 
different feedback messages), the effort is rewarded with improved learning.  
 

In contrast to locally-adaptive feedback, a feedback message could consider stored 
information derived from previous student-system interactions or other sources.  Such stored 
information is sometimes referred to as a student model (Woolf, 2009).  A student model 
typically aims to keep a record of the evolving state of student mastery over a set of learning 
objectives; although, it may also incorporate other types of data, such as student traits, interests, 
and motivations (Vandewaetere, Desmet, & Clarebout, 2011).  We will refer to adaptive 
decisions that use the amassed data in a student model as “context-aware.”  With context-aware 
feedback, the student may be given different feedback for the same local input, under different 
circumstances.  For example, if the student model suggests that a student already can identify 
false morels, then an error on the question posed in Figure 3 may produce feedback like, “hmm, I 
thought you knew this one.”  Or if the student model suggests the student can identify True 
Morels and Coral Fungus the system may provide feedback like, “You’ve already correctly 
classified True Morels and Coral Fungus.  Recall that True Morels have a cap that is symmetrical 
and longer than the stem and Coral Fungus has branchlike angular spines.”  In contrast, the cap 
of a false morel bulges to one side and is not attached to the stem.  The false morel has wavy 
fissures like a brain.  Messages like these allow the instructional system to more closely replicate 
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the feedback that a human tutor might provide, and to personalize the experience.  As another 
example, context-aware feedback might affect feedback timing: if the student is nearing a 
mastery criterion, then the feedback might be delayed until the end of a scenario-based training, 
whereas a more novice student might be provided feedback upon each decision relevant to the 
learning objectives.  A system that supports context-aware feedback will be more complex and 
resource intensive to create, because additional pedagogical rules will have to be implemented to 
determine how to use the contextual information to adapt the feedback.  At this point in time, 
empirical evidence to justify this extra effort is lacking (Durlach & Ray, 2011).  Therefore, our 
framework does not attempt to delineate all the possible ways context-aware feedback could be 
delivered.  Research is required to determine the circumstances and rules under which context-
based feedback is rewarded with enhanced learning outcomes.   

 
The five levels of corrective feedback specified in FIT are listed in Table 2.  To 

summarize the foregoing discussion, there is empirical evidence suggesting that Level III 
enhances learning relative to Levels 0, I, and II; but there is a lack of evidence as to whether 
Level IV provides additional benefits commensurate with the extra design and development 
requirements for its implementation.  
 
Table 2. The Five Levels of Corrective Feedback Specified in FIT 

Level 0 No explicit item-level feedback – only summary score 
Level I Minimal feedback (item accuracy information) 
Level II Correct answer or explanation of correct answer  
Level III Error-sensitive feedback 
Level IV Context-aware feedback  

 
Feedback in the FIT concentrates on corrective feedback as a form of adaptation.  

Positive feedback (confirmation that a response is correct) is not explicitly addressed because 
usually it is not adaptive.  All students that respond correctly get the same positive feedback.  It 
should be noted, however, that the content of positive feedback could be adapted based on some 
assessment of student certainty.  The degree of confidence that students have in the correctness 
of a response can affect receptivity to feedback content (Kulhavy & Stock, 1989).  If confidence 
is high and the response is correct, the student might pay little attention to the feedback. 
Therefore, there seems little point in providing more than minimal feedback.  On the other hand, 
if confidence is low, students may benefit from explanatory information (why the response was 
correct).  There is research to suggest that adapting the amount of explanation in positive 
feedback messages to the certainty of the student can be beneficial (e.g., Forbes-Riley & Litman, 
2011; Mitrovic, Ohlsson & Barrow, 2013). Mitrovic et al. (2013) discuss several ways that an 
instructional system can be implemented so as to detect and respond to uncertainty.  
 
Support 

 
In ideal one-on-one tutoring, the tutor acts as a knowledgeable learning partner, who 

adjusts the learning activity according to the comprehension of the learner.  The activity should 
require some mental effort from the learner, yet should be one that the learner can master, with 
support and guidance from the tutor.  The approach of adapting the learning activity to being just 



12 
 

one step beyond the learner’s current abilities is known as the mastery approach; and the support 
and guidance offered by the tutor is known as scaffolding.  Scaffolding can encompass a number 
of different instructional tactics, such as diagrams, examples, attention focusing, hints, pumps, 
and encouragement.  Effective scaffolding reduces confusion and uncertainty, and keeps the 
student on task.  It can also encourage the student to engage in metacognitive processes 
important for learning, such as elaboration, self-checking, and self-reflection (Aleven, Stahl, 
Schworm, Fischer, Wallace, 2003; Azevedo & Hadwin, 2005; Luckin & du Boulay, 1999; 
Renkl, Hilbert, & Schworm, 2009).  

 
The educational literature prescribes that as learner competency increases, scaffolding 

should gradually be withdrawn (Pea, 2004; Wood & Wood, 1999).  This is often referred to as 
fading.  Just as a person healing from a broken leg may go from crutches to a cane to no 
assistance, ultimately, the learner should be able to apply their knowledge to solving a problem 
without any assistance.  Thus, by its very nature, scaffolding should be context-aware—
increased when the student is having difficulty and decreased as their mastery increases. 
Deciding the level of support thus depends on knowledge of a student’s evolving competence.  In 
technology-based instruction, support can be provided on request, upon a partial correct solution, 
or proactively, e.g., if the student takes too long to make the next response (e.g., Fossati, 2009).  
In several step-based ITS, students can request hints multiple times on each step.  Repeated 
selection of the hint button provides an increasingly directive hint.  The final hint—the bottom-
out hint-- provides the solution if necessary (e.g., Guo, Heffernan, & Beck, 2008; Roll, Aleven, 
McLaren & Koedinger, 2011).  

 
A different ITS approach for hinting has been to associate decreasingly detailed hints 

with problem number; i.e., most detailed hint on problem one, less detailed hint on problem two, 
etc. (e.g., Schwonke, Renkl, Salden, Aleven, 2011).  This is meant to be analogues to fading 
(reducing support as the student learns).  While these types of support mechanisms are 
sometimes referred to as scaffolding; they are not true scaffolding, because they do not depend 
on the student’s current level of understanding.  They are not adaptive, since all students have the 
same sequence or detail of hints available. Wood and Wood (1999) did implement adaptive 
fading in their ITS, QUADRATIC.  The level of detail provided in a requested hint was 
contingent on the student’s performance and the level of hint they received on the previous 
exercise.  Problem success meant the next requested hint was given at a less detailed level than 
the hint on the last problem, whereas lack of success meant the next requested hint would occur 
at a more detailed level than before.  

 
To make the distinction between different implementations of support clear, our 

framework explicitly separates methods like access to fixed hints vs. truly adaptive scaffolding 
techniques.  We also make the distinction between locally-adaptive and context-aware adaptive 
support.  A locally-adaptive hint or prompt is contingent on the latest student response (or lack of 
a response).  Wood & Wood’s QUADRATIC ITS is an example, because it uses the student’s 
response on the last problem (as well as knowledge of the detail level of the hint given).  A 
context-aware hint or prompt is contingent on the pattern of student performance over time.  For 
example, QUADRATIC’s implementation might be modified to provide hints on the basis of a 
student model of past performance and hinting detail (instead of just the last problem).  For 
complex tasks, which draw on knowledge related to multiple learning objectives, different levels 
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of support might be assigned to different exercise subcomponents.  Steps related to already 
mastered learning objectives may have little support provided, whereas those related to less 
secure understanding may have relatively more support provided.  Analogous to Context-aware 
adaptive feedback (Level IV), context-aware adaptive support enables the system to interact in a 
more flexible way with the student, capitalizing on multiple prior interactions to construct hints 
and prompts.  When such a system is equipped with a natural language interface, this method of 
scaffolding can be implemented as interactive dialogs (in text or orally). An example of a system 
that uses interactive dialog is the ITS, AUTOTUTOR, described in Graesser, Jeon, and Duffy 
(2008).  Dialog between an ITS agent and the student supports the student in refining and 
explaining problem solutions. 

 
Sometimes feedback and scaffolding are grouped together as support techniques 

(VanLehn 2006; 2011).  Support tends to be given during problem solving, whereas feedback 
can be given either during or after problem solving.  The distinction can be blurry, however. An 
After Action Review (AAR), which helps a student critically analyze what they did right and 
what they did wrong, tends to mix feedback and support.  While acknowledging that support and 
feedback can be integrated, our framework separates the two, because some instructional systems 
may include feedback only, and we want our framework to be able to clearly characterize 
instructional functionality.   

 
The five levels of support specified in FIT are summarized in Table 3.  Level 0 represents 

no support.  Level I represents support that is pre-scripted and accessed on the student’s 
initiative.  An example might be a glossary, a link to additional explanatory information, or a 
“request a hint” button.  In the latter cases, information accessed through the link or button is 
problem-centric.  It is intended to assist students with the problem at hand, but is not adaptive, 
because the information or help available is the same for every student.  It is adaptive only in the 
sense that the student has the option to use it or not.  Level II represents resources that are 
locally-adaptive.  The support available depends on some aspect of the student’s most recent task 
performance.  The support can be either requested by the student (IIa) or triggered automatically 
(IIb), or both.  The ITS Quadratic, described above, is an example of IIa.  Latency-triggered 
reminders would be an example of Level IIb; e.g., in an emergency response scenario-based 
exercise, a first-responder may be reminded to call in a status report, if they neglect to do so after 
a criterion amount of time.  Level III support is responsive both to local and contextual 
information.  It is true scaffolding, in which the student is weaned off support as mastery 
increases across practice.  A sailor learning to navigate by magnetic compass for the first time 
may be guided through the steps of applying local variation and deviation to calculate the 
required compass heading, whereas a student getting refresher training may simply be given a 
memory jog (e.g., a mnemonic for True, Variation, Magnetic, Deviation, Compass is TV Makes 
Dull Children).  Finally, Level IV represents true scaffolding mediated by natural language 
dialog.  This level of support allows mixed-initiative dialog between the student and a 
pedagogical agent, helping the student to actively construct knowledge (Graesser et al., 2008). 
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Table 3. The Five Levels of Support Specified in FIT 
 

Level 0 No support  
 

Level I Fixed hints on request (problem determined); other 
fixed sources of information (e.g., glossary) where 
student initiates access 

Level II Locally-adaptive hints, prompts, or pumps  
a. on request 
b. triggered 

Level III Context-aware adaptive hints, prompts or pumps (True 
Scaffolding) 

a. on request 
b. triggered 

Level IV The same as Level III, with interactive dialog 
 

 
There is evidence that including some form of support in instructional technology is 

beneficial for learners (e.g., Aleven & Koedinger, 2002; Clarebout & Elen, 2009; Kali & Linn, 
2008); however, few experiments have attempted to examine whether adapting support affects 
learning outcomes.  One, conducted by Luckin and du Boulay (1999) had three hint conditions, 
which were analogous to FIT’s Levels I, II, and III; but, their test was completed by only 26 
students, and their results were inconclusive.  Relatively more research has been completed in 
the area of “faded worked examples.”  Worked examples are step-by-step demonstrations of how 
to perform a task or solve a problem.  Fading worked examples is an instructional technique in 
which the amount of the problem that the student has to solve is gradually increased.  Over time, 
the student progresses from reviewing completely worked out examples to solving entire 
problems.  The process can also include requiring students to justify solution components.  When 
the fading is conducted according to a fixed schedule, it is not adaptive, whereas when the fading 
is governed by the student’s own past performance on previous problems, it is adaptive.  Salden, 
Aleven, Renkl and Schwonke (2009) demonstrated a learning benefit from adaptively fading 
worked examples in the context of students solving geometry problems requiring the application 
of four different theorems.  In the adaptive condition, transition from presenting a solved 
problem step vs. requiring the student to solve the step was based on an estimate of whether the 
student understood the relevant theorem.  That estimate was based on whether the student 
previously was able to choose the right justification (from a menu) for an analogous step in 
previous examples.  Students in this condition performed better on a posttest than students who 
had received fading of worked examples according to a fixed schedule.  Two other experiments 
have also shown learning benefits from adaptive fading of worked examples (Corbalan, Kester, 
& van Merriënboer, 2008; Kalyuga & Sweller, 2004).  In these three experiments, the adaptive 
conditions could be labeled as FIT support Levels IIb (Kalyuga & Sweller, 2004) or IIIb 
(Corbalan et al., 2008; Salden et al., 2009); however, the fixed conditions do not really fit 
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naturally as support Level I, because they were not under student control.  In the context of FIT, 
these results are more properly viewed as evidence for mastery learning.  That is, they are more 
naturally interpreted in the context of FIT as adaptively increasing the challenge for the student 
as they show more evidence of competence, as opposed to reducing support (fading).  
Nevertheless, we mention the results here because of the superficial similarity between “fading 
of worked examples” and fading of scaffolding.  

 
Rather than examining how adapting support affects learning, research has tended to 

focus more on how students use on-demand help (Level I, or IIa) and how the content of on-
demand help affects learning outcomes.  With regard to how students use on-demand help, it has 
been found that many students abuse the help, by rapidly requesting repeated hints until they get 
to the bottom-out hint.  Thus, they overuse the hints to get through problems.  Other students do 
not use help enough; i.e., they neglect to use hints when they might be of help (Aleven et al., 
2003; Clarebout & Elen, 2009).  To try to correct these misuses of hints in ITS, Roll et al. (2011) 
implemented a Help Tutor within a geometry ITS.  This Help Tutor provided students with 
feedback on their use of the available hints, instruction on help-seeking, and support for self-
assessment.  This supplement to the original geometry ITS reduced help abuse; but it failed to 
have a significant effect on learning outcomes.  With regard to research on designing the content 
of hints or help messages, content that fosters student reflection, self-explanation, and mental 
model formation tends to be most effective (e.g., Dutke & Reimer, 2000; Renkl et al., 2009; Roll 
et al., 2011).  Dutke and Reimer’s (2000) results suggest that the optimal design of on-demand 
help may differ depending on whether the help is intended as a performance aid only (to 
accomplish the task as quickly as possible) vs. whether the help is intended to instruct (so that 
future tasks can be accomplished without help).  If the latter, help content should focus on 
principles and support construction of student understanding.  
 
Micro-sequencing 

 
As mentioned in the previous section, the mastery learning approach involves tuning the 

learning activities to the student’s current capabilities.  It is one adaptive technique supported by 
ample evidence as to its effectiveness (Guskey & Pigott, 1988; Kulik, Kulik, & Bangert-Drowns, 
1990; Perrin, Dargue, & Banks, 2003).  The implementation of the mastery technique during 
one-on-one tutoring is likely one of the main reasons it is so successful (VanLehn, 2011).  The 
technique involves organizing learning objectives into sequential modules, which build on each 
other.  Students are required to demonstrate mastery on one module before proceeding to the 
next, more advanced, module.  Mastery is demonstrated through various forms of ongoing 
assessment.  The assessments are designed to diagnose student strengths and weaknesses.  After 
initial assessment, the next learning activity should be tailored to repair any diagnosed problems.  
These activities are called correctives or remediation.  The aim is to select the best learning 
activity that will keep students at the right level of challenge, avoiding both boredom and 
frustration.  It is assumed that with such targeted instruction, all students should be able to master 
a module and move on (Bloom, 1976).  Mastery learning is relatively easy to implement in 
instructional technology for individuals, compared to classrooms, because each student can 
progress at his or her own pace.  Effective use of the technique requires valid automated 
assessment measures of learning, however, which take skill and effort to create.  These measures 
should be linked to the learning objectives and ideally have known psychometric properties 
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(such as average difficulty, ability to discriminate different levels of mastery, or strengths on 
component skills or knowledge).  Many current on-line learning applications seemingly 
implement mastery learning (e.g., by requiring a certain score on a module posttest); however, 
they rarely include tailored remediation for students who do not meet the mastery criterion.   

 
The FIT micro-sequencing construct addresses the different ways that instructional 

technology can respond to students who fail to demonstrate performance at a mastery criterion.  
Micro-sequencing can be concerned with remediation (repair) or enrichment (i.e., more in depth 
materials for high performing students); however, FIT is primarily concerned with methods of 
remediation.  By definition micro-sequencing is adaptive.  If all students receive exactly the 
same experience, no sequencing decisions are made during the learning experience.  

 
Four main decisions are required to implement micro-sequencing.  First, what constitutes 

mastery?  Second, is remediation mandatory or optional?  Third, are dedicated remediation (or 
enrichment) materials available?  Fourth, how will mastery be re-assessed? 

 
1. What constitutes mastery?  The issue here is whether mastery is determined by a 

pattern of assessment scores, with different scores associated with different learning objectives, 
or whether mastery is represented in one aggregate score.  Assessment can be conducted as a 
separate event (such as a test), or it can be integrated into the learning activities themselves. 
Interactive digital learning activities (e.g., step-based problem solving, simulation and micro-
worlds), provide the possibility to assess students at the same time as they apply or practice what 
they have learned.  If mastery of a Terminal Learning Objective (TLO) is achieved through 
demonstrated mastery of associated subtasks or Enabling Learning Objectives (ELOs), then 
mastery can be represented by a pattern of scores across ELOs.  In that case, the module might 
be deemed mastered only when all of the ELOs have been mastered to the designated criteria 
(regardless of the average across them).  Alternatively, the mastery criterion may be represented 
by a simple average across assessment items.  A benefit of the pattern approach is that it allows 
diagnosis of student problems and subsequent customization of the next activity so as to focus on 
areas of student weakness.  If mastery is represented as a single score, the information about 
specific strengths and weaknesses may be lost, and therefore the next activity cannot be 
customized to the same degree.  The different levels of micro-sequencing in FIT roughly 
correspond to how finely tuned the next activity is to student needs.  

 
The contents in Table 4 and Table 5 are used to better illustrate the benefits of using the 

pattern approach compared to the summative approach. Table 4 presents an example TLO, 
broken down into two ELOs, which are further broken down into knowledge components (i.e., 
the specific pieces of information that need to be learned).  Table 5 presents hypothetical 
assessment results of two students who have completed a training simulation designed to assess 
their knowledge of the content.  In the far left column, Table 5 lists 12 critical decisions points in 
the simulation scenario, with each decision point potentially demonstrating understanding of the 
learning objectives as laid out in the Table 5 column “Assessment related to.”  It can be seen that 
although the two students have the same average score across the decision points (75%) their 
patterns across the decision points are quite different.  Student 1 has difficulty only with the most 
difficult decisions, requiring integration of two pieces of knowledge, whereas Student 2 has 
problems specifically with ELOs 2b and 2c.  By understanding this pattern of results, the two 
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students can be given different interventions targeted at their specific problems.  Such targeted 
interventions are not possible when only the overall average scores are considered.  Table 5 also 
illustrates that the mapping of assessment to knowledge components need not be one-to-one. 
Complex mappings are possible (many-to-many).  In addition, weights might be applied to 
represent the relationship among different knowledge components and assessments.  Finally, 
assessment patterns might influence the selection of corrective remediation on the basis of raw 
scores or on the basis of modeled scores.  For example, a modeled score may take the chance of 
guessing correctly into account, and/or the degree of relatedness among ELOs (i.e., the degree to 
which mastery of one ELO predicts understanding of another ELO).  Some models aim to predict 
the next best learning activity for the student, given the pattern of their past responses and 
knowledge of remediation tasks, such as average task difficulty (e.g., desJardins, Ciavolino, 
Deloatch, & Feasley, 2011).  

 
Table 4. An Illustration of Hierarchically Arranged Learning Objectives.  
With the Terminal Learning Objective (TLO) Broken Down Into Two Enabling Learning 
Objectives (ELOs).  ELOs Are in Turn Broken Down into Smaller Knowledge Components 

 
TLO: Understand Airspace Procedural Controls 

ELO 1: Understand the three types 
of airspace separation 

ELO 2: Understand five types of 
airspace control measures 

1a. Temporal 
 

2a. Air control point 

1b. Lateral 
 

2b. Air corridor 

1c. Vertical 2c. Coordinating altitude 
 

 2d. Restricted operating zone 
 

 2e. Minimum risk corridor 
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Table 5. An Illustration of the Assessment Results of Two Hypothetical Students.  
Both Students Have the Same Average Score across Assessment Items (Decision Points); 
However, Their Patterns across Items Suggest They Would Benefit From Different Forms of 
Remediation 

 
Decision 

Point 
Assessment 
related to: 

Student 1 Student 2 

1 1a   
2 1b   
3 1c   
4 2a   
5 2b  X 
6 2c  X 
7 2d   
8 2e   
9 2c & 1c X X 
10 2d & 1b X  
11 2b & 2e X X 
12 2d & 1a X  

Simple Average 75% 75% 
 
2. Is remediation mandatory or optional?  Having gone through some core content and 

assessment, some instructional applications provide an underperforming student the choice 
between going through remediation or conducting re-assessment immediately, without remedial 
review.  The re-assessment may be confined to the learning objectives that were failed, rather 
than a re-assessment on the entire scope of the module.  Allowing immediate re-assessment may 
be unproductive from a learning point of view, because it may encourage students to guess, 
especially when multiple attempts at re-assessment are allowable.  This is particularly a problem 
when students select from a limited number of responses to assessment items (e.g., multiple 
choice).  It is less of a problem when students are required to generate responses (such as 
producing steps to solve an algebra problem), as long as new assessment items are available.  
 

3. Are dedicated remediation materials available?  The simplest form of remediation is 
recycling.  In recycling, students go through content over again.  If mastery is based on a simple 
summary score, they may have to review the entire module, or at least navigate through the 
entire module.  If mastery is based on a pattern of ELO scores, and the learning materials are 
constructed appropriately, it should be possible for students to review the materials specifically 
related to their areas of weakness.  Recycling may be effective if mere forgetting is the source of 
sub-criterion assessment performance.  On the other hand, it is unlikely to be effective if the 
source of sub-criterion assessment performance was due to an inability to understand the 
previous content.  In that case, dedicated remedial materials may be more useful.  These would 
consist of supplemental content, specifically designed for remediation.  An example is an 
application created by Tseng, Chu, Hwang, and Tsai (2008) to help junior high school students 
learn about mathematical sequences.  The system had three ways of presenting content: “Easy,” 
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which reviewed prerequisite concepts in detail while introducing each new concept at a basic 
level, “Middle,” which reviewed only the most relevant prerequisites, while introducing each 
new concept, and “Difficult,” which did not review prerequisites and presented both basic and 
advanced concepts.  If a student failed a Difficult- or Middle-level module posttest, students 
repeated the module, but at the next lower level.  Conversely, students who did very well on a 
module posttest would get the next module at a higher level.  Students learning with this system 
outperformed those learning with the system fixed at the Middle level throughout (by about 0.8 
standard deviations), as measured by a post-learning test.  Another approach to creating 
supplemental remediation is to create different content versions using different types of media.  
For example, one version may explain a concept in text, while another version may present a 
visual demonstration, and yet a third version may provide a practice environment.  Students may 
opt to utilize any of the different versions on their path to mastery, and be offered one not yet 
utilized for remediation.  Finally, supplemental remediation may simply involve more problems, 
in contexts where students must solve problems or perform a task (i.e., students are given 
problems or tasks until they reach mastery). 

 
4. How will mastery be re-assessed?  The issue here is whether the same exact 

assessment measures are used to assess mastery post-remediation as compared with pre-
remediation.  Parallel forms of assessment are desirable (i.e., the same underlying competencies 
assessed by different specific questions or methods).  Some instructional technologies make use 
of test banks for re-assessment, with previously used questions excluded.  It may be challenging 
to create parallel and equally difficult items; but it is especially important if remediation is 
optional and immediate retest is allowable. 

 
FIT does not attempt to represent all the possible combinations of these four factors, but 

instead focuses on the nature of the remediation experience per se (question 3 above).  Given 
that the student has been assessed as below threshold, what are the various ways that correctives 
can be given?  The way correctives are implemented is really the essence of the adaptation.  
Various possibilities are listed in Table 6.  The most basic form of adaptive micro-sequencing 
(Level 0) is Recycling.  As illustrated in Figure 5a, when Recycling is implemented, students 
who fail to reach mastery simply repeat the content again.  Recycling is usually based on a single 
aggregate performance score; however, a variation could be based on a pattern of ELO scores, in 
which case the repeated content might be limited to that associated with the failed ELOs.  In 
practice, Recycling is the only FIT level that commonly allows immediate re-assessment (dashed 
lines in Figure 5a) without required review.  If the developers have gone to the trouble of 
creating alternative versions of the content, they typically require students to use it. 

 
Level I, Supplemental Remediation (Figure 5b), is somewhat more adaptive than 

recycling.  Instead of merely repeating content, supplemental materials are provided.  The 
supplemental materials could be designed specifically for students who have been unable to 
master the learning objectives based on the core content of the module.  For example, they may 
use simpler language, or more explanation.  Alternately, they could use a different format than 
the core content, or just present additional opportunities to practice a task (e.g., more 
multiplication problems to practice).  Level II, Supplemental Remediation Levels is even more 
adaptive (Figure 5c).  It is similar to Supplemental Remediation, except that multiple versions of 
supplemental remediating materials are available.  The version selected may depend on the 
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distance the student is from mastery, or on whether the student has already gone through one of 
the other versions.  The Tseng et al. (2008) system described above is an example of Level II, 
because there were two levels of remediation available. 

 
Table 6. The Five Levels of Micro-Sequencing Specified In FIT 

 
Level 0 Recycling 
Level I Supplemental Remediation  
Level II Supplemental Remediation Levels  
Level III Adaptive Content 
Level IV Real-time Adaptation 

 

 
 

Figure 5. Levels 0, I, and II of micro-sequencing in panels a, b, and c, respectively. 
 
 As already described, the more granular the pattern of assessment scores, the more 
personalized the learning path can be, because more information is known about the student; 
however, personalizing the learning path also depends on opportunities to adjust the learning 
content or activities.  If content or activities are formulated in blocks, the sequence can only be 
adapted between blocks.  Therefore, the finer grained the blocks, the more opportunity there is to 
adapt.  Levels III and IV, Adaptive Content and Real-time Adaptation, attempt to represent 
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micro-sequencing with finer grained blocks than Levels 0 – II.  They both require that learning 
activities be associated with knowledge components, similar to the example given in Table 5.  
They are distinguished by whether “blocks” are discrete or continuous. 

 
With Adaptive Content, each student experiences his or her own sequence of problem-

based tasks.  These tasks have integrated assessment such that assessment results on prior tasks 
are used to select the next task, until the student reaches mastery.  The ultimate mastery goals are 
the same for all students, but the path by which they get there may be different.  So for example, 
in a geometry ITS, each student would receive a different sequence of practice problems, 
depending on the types of errors they commit.  Corbett and Anderson (1995) refer to this type 
task selection in an ITS as “cognitive mastery learning.”  Some ITS accomplish this with the aid 
of a “bug library” (e.g., VanLehn, 1982).  Bug libraries represent common student 
misconceptions or confusions.  They enable ITS to interpret not only that an error occurred, but 
also the underlying misconception that caused the error.  When the system can recognize an 
erroneous response as indicative of a particular misconception, it can provide remediation 
targeted precisely to fix it. 

 
Figure 6 illustrates Adaptive Content micro-sequencing in the context of a shoot-no shoot 

decision exercise.  Imagine that immersive practice on this decision making task can be varied 
parametrically in terms of number of targets and number of distracters, and that there is a library 
of 16 exercises represented by combining four levels on each of these factors.  Depending on 
how well students perform at selecting targets and avoiding distracters, the number of targets and 
distracters will be increased (or not) from one practice exercise to the next.  Different students 
take different paths through the space of possible scenarios with two possible paths illustrated in 
the figure.  An application of Adaptive Content such as this can be found in Levchuk, Shebilske, 
and Freeman (2012).  They applied modeling techniques to determine paths for team training 
scenarios for the Air Force Dynamic Targeting Cell, where the scenarios varied planned targets 
requiring offensive action, and unplanned targets, requiring defensive action. 

 
Real-Time Adaptation is similar to Adaptive Content, except that adjustment of the 

learning task is transparent to the student.  If Real-Time Adaptation applied to a shoot-no shoot 
decision exercise, the challenge level would adjust in real-time, without having to complete one 
exercise and start another.  With a more narrative-based scenario, Real-Time Adaptation would 
involve adjusting scenario events “on the fly,” based on the student’s ongoing performance.  For, 
example, in a first-person shooter type of training scenario, the skill level of the opposition 
forces might be incremented or decremented according to the student’s success thus far.  As 
another example, in a mission command scenario, the complexities of managing infrastructure 
rebuilding and host-nation institutions may be amped up gradually as the student demonstrates 
the ability to handle simpler situations.  Accomplishing scenario-based training with Real-Time 
Adaptation is currently a matter for research (e.g., Domeshek, Durlach, & Bratt, 2010). 
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Figure 6.  Example of how micro-sequencing can produce two different paths in shoot/no shoot 
decision training.  Both students start out at the easiest level (lowest number of targets and 
distracters, represented in the lower left corner).  Student 1 has more difficulty withholding fire 
at distracters than Student 2, so is advanced more slowly up the distracter challenge levels 

 
There are multiple important considerations in deciding what level of micro-sequencing 

to use.  First, in general, the more adaptive, the more content required.  Anything more advanced 
than recycling requires that “extra” content be created.  E.g., the shoot/no-shoot example in 
Figure 6 (Adaptive Content) requires 16 different scenarios, even though some students may 
only need to complete as few as four.  Depending on the nature of the training, Real-Time 
Adaptation could be more efficient.  In the shoot/no-shoot example, only one scenario might be 
required, if it can automatically tune the level of challenge to the student’s current level of skill, 
and add a degree of randomness to where and when targets and distracters appear. 

 
A second consideration in selecting a level of micro-sequencing is that, for Adaptive 

Content and Real-Time Adaptation, the designer must be able to specify the association between 
performance assessment measures and the knowledge components (as in Table 5).  These 
associations are used to update the student model based on performance.  Likewise, the designer 
must be able to specify the associations between knowledge components and content.  These 
associations are used to determine which content would best serve to repair student weaknesses 
or which path the student should take through the learning space.  To the extent flaws exist in 
these associations, the benefits of adaptive micro-sequencing will be undermined.  Ensuring 
accuracy typically will require a more intense effort of up-front domain analysis (e.g., cognitive 
task analysis) and a more rigorous approach to assessment design, compared with less adaptive 
methods.  Data mining of performance results from training with models crafted by experts may 
subsequently be applied to improve these associations (e.g., Koedinger, McLaughlin, & Stamper, 
2012). 

 
Another consideration is that any technology-based instructional system that requires 

mastery for a student to progress through the modules results in students finishing at different 
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times.  If students are required to engage in some follow-on group activity, dependent on the 
knowledge gained, that activity needs to be scheduled far enough out so that all students have 
sufficient time to complete the course of instruction. 

 
As mentioned at the beginning of this section, there is good evidence on the effectiveness 

of the mastery approach (Guskey & Pigott, 1988; Kulik et al., 1990; Perrin et al., 2003).  Yet 
there is surprisingly sparse evidence when it comes to comparing the various methods of 
implementing it.  Few studies have endeavored to compare the relative effects of the different 
FIT levels of micro-sequencing, holding all other factors constant.  As already mentioned, Tseng 
et al. (2008) compared the effects of presenting students with fixed content (Middle) vs. adapting 
the difficulty of the content (Easy, Medium, or Hard) according to student performance, and did 
find a large effect size (0.8).  They applied Level III, Supplemental Remediation Levels micro-
sequencing for determining the remediation content if a student failed a post-unit test, as well as 
for selecting the difficulty level of the content presented in the next unit, once the previous unit 
was passed.  They compared this with Level I (Recycling), in which all materials were presented 
at the same (Middle) level.  Because they adapted both remediation and new content selection, it 
is unclear what the relative contributions of the two adaptations were compared to simple 
recycling.  I.e., we don’t know whether adapting remediation content, but presenting all new 
content at the Middle level would be just as effective.  

 
Given the amount of effort dedicated to creating ITS, which implement Level III 

Adaptive Content micro-sequencing, there has been surprisingly little empirical test of whether 
customizing the sequence of problems students work on produces any benefit over simply 
imposing a mastery approach, and presenting problems from a problem bank (i.e., micro-
sequencing Level I or II).  The majority of empirical tests have compared the efficacy of ITS to 
no intervention (e.g., ITS added to standard classroom teaching vs. classroom teaching only) or 
to one-size-fits-all, non-mastery based methods (for a review see Durlach & Ray, 2011).  After 
conducting a meta-analysis of various tutoring methods, VanLehn (2011) concluded that it is the 
granularity of the feedback and support that seems most responsible for enhanced learning 
outcomes, although he did not explicitly attempt to isolate content selection (micro-sequencing) 
as a factor.  Thus, based on the lack of evidence, it is unclear whether learning gains are to be 
had from micro-sequencing Level III over Levels I or II. 

 
Macro-sequencing 

 
Brusilovsky and Vassileva (2003) discuss the idea of dynamic courseware generation, in 

which a course could be generated “on the fly” to take into account the students’ existing 
knowledge, goals, and timeframe, adapting dynamically to their difficulties and rate of progress.  
Their discussion of dynamic sequencing addressed both adaptations for dealing with remediation 
and adaptations for sequencing topics.  Our intent is to separate the process that recommends 
what to do next when a student needs remediation (micro-sequencing) and the process that 
recommends what to do next once current topic mastery has been attained.  We call that latter 
process macro-sequencing.  Macro-sequencing has to do with determining the order in which 
new topics or learning objectives are introduced.  Macro-sequencing can occur at different levels 
of granularity.  It may involve curriculum sequencing (e.g., the path to completing a major in 
psychology), or the order of topic assignments within a course.  Or it may involve decisions 
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about lesson and exercise sequencing within a module.  Traditionally, topic sequences have been 
based on domain analysis and instructors’ past experiences of what works well.  It has been 
suggested that topic sequences should also be based on how students actually learn.  Mirroring 
stages of understanding and sophistication, succeeding topics should represent levels of 
achievement that are intermediate steps in the pathway to expertise (Corcoran, Mosher, & Rogat, 
2009).  Our review of macro-sequencing techniques is not concerned with identifying the ideal 
learning progression through a specific domain, but rather, once those learning progressions are 
determined, how they might be adapted for different students, depending on their learning goals 
and learning performance. 

 
Just as there are several questions that need to be considered when implementing micro-

sequencing, there are also multiple questions involved in macro-sequencing.  One of those 
questions concerns the extent to which students are allowed to choose the sequencing of topics.  
Like choosing courses to take for a university major, some topics may be mandatory, whereas 
others may be a matter of choice (with respect to whether to take it or when to take it).  Certain 
pre-requisites may be mandatory before an optional advanced topic can be selected.  In some 
cases, students may be given recommendations on the sequence of topics to follow, but still 
retain the choice of whether to follow the recommendations or not (e.g., Triantafillou, 
Pomportsis, Demetriadis, & Georgiadou, 2004; Tsiriga & Virvou, 2004). 

 
Another question to be considered is whether multiple versions of the same topic will be 

available.  Different versions may be created with the intention of optimizing the fit between 
student aptitudes and instructional strategy, media, and/or cognitive demands.  An aptitude in 
this context is an individual characteristic such as cognitive or learning style, self-efficacy, 
motivation, prior experience, or cognitive ability.  A few reasons to produce different topic 
versions are: to provide supplementary instruction to learners who are deficient in a particular 
aptitude, to provide a format that matches a learner’s preferred mode of processing or perceiving 
(e.g., visual vs. verbal), and/or to challenge or stimulate learners with above average aptitude.  

 
Multiple versions might also be created to suit students with different reasons for 

learning.  For example, a student may need to learn a foreign language for an imminent job 
requirement or for an upcoming vacation.  Depending on expected needs, students may cover 
different vocabulary and practice exercises.  There may be some core modules completed by all 
students, after which students with different goals or roles branch to tailored materials.  An 
example of this is Virtual Cultural Awareness Trainer (VCAT; Johnson, Friedland, Schrider, 
Valente, & Sheridan, 2011), which provides cultural and language training that focuses on the 
development of mission-relevant intercultural competence.  Students receive practice in 
scenarios that are selected based on their expected areas of responsibility.  Trainees starting the 
course complete a placement questionnaire in which they indicate their particular area of 
responsibility, mission focus, and level of seniority.  The VCAT course delivery system then 
automatically selects the set of required modules that target language learning for contexts most 
related to the trainee’s anticipated mission role. 

 
If multiple versions of the same topic are created, then the question arises as to how 

information about student aptitudes or goals will be collected and utilized to recommend or 
mandate one of the available versions.  One approach is to collect student information prior to 
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the instructional experience, as in the VCAT described in the previous paragraph.  An alternate 
approach is to collect student data during the instructional experience and dynamically select 
topic versions based on that information.  For example, in the already mentioned work of Tseng 
et al. (2008), performance on each post-unit test was used to determine whether the next unit was 
presented at the Easy, Middle, or Advanced Level.  

 
FIT’s methods of macro-sequencing intend to capture these various possibilities.  The 

FIT macro-sequencing levels are listed in Table 7.  Level 0 represents the case in which the order 
of modules is mandated, and all students follow the same sequence.  Level I refers to cases in 
which there is some degree of, or complete student control over the order in which modules are 
presented.  In the hybrid case, certain modules may be required before access to others, but there 
is still some element of student choice in the sequence.  For both Levels 0 and I, all students go 
through all the same content, but perhaps in different order at Level I. 

 
Table 7. The Five Levels of Macro-Sequencing Specified in FIT 

 
Level 0 Fixed sequence (one version only) 
Level I Student choice or hybrid choice/fixed  
Level II Test-out 
Level III Adapted Ahead (multiple versions) 
Level IV Adapted During (multiple versions) 

 
Level II, Test-out, characterizes situations in which the student is given a knowledge 

pretest.  Sets of pretest questions are associated with different modules, and a passing grade on a 
pretest set allows the student to skip the associated module.  The aim is to save students time by 
allowing them to skip material they already know.  When using Test-out, care should be taken to 
avoid the possibility of testing-out by chance (e.g., lucky guessing on multiple choice questions), 
and that the pretest assessment covers the learning objectives.  One possible method of 
identifying lucky “test-out” is to re-test all the module content again as a post-test. 

 
Levels III and IV both deal with cases in which multiple versions of instruction exist for 

the same topic, and information about the student is used to select which version the student 
experiences.  Level III, Adapted Ahead, refers to situations in which pre-task measures or 
historical information about the student is collected before the instructional experience begins.  
The data are then used to select the sequence of versions.  Once the version is selected, the 
content remains set throughout the training; no real-time adaptations exist based on student 
performance.  Thus, Level III is analogous to Park and Lee’s (2004) macro-adaptive instruction.  
Level IV, Adapted During, refers to situations where version selection occurs dynamically 
during learning, using data collected during student-content interaction.  The data typically are 
about student performance during learning assessment.  Students in the upper percentiles of 
performance may be given subsequent modules at more advanced levels, whereas students in the 
lower percentiles of performance may be given subsequent modules that have been simplified, 
contain more practice, or include other means to support learning. 
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These levels of macro-sequencing are not mutually exclusive.  They could be combined 
in various ways.  For example, Tseng et al. (2008) used Adapted Ahead on the basis of cognitive 
style and also Adapted During on the basis of module post-tests.  As another variation, it is 
possible to use Test-out, but allow students to do modules in any order they choose.  This 
combination was applied in an Army Civilian Education Course the authors were required to 
complete. 

 
Research on the effectiveness of the different macro-sequencing approaches is sparse, 

except for Adapted Head (FIT Level III).  Most of the evidence on this approach comes from the 
aptitude-treatment interaction (ATI) literature which seeks to determine whether different 
instructional formats (the treatment) should be selected for students of different aptitude, be it 
learning style, cognitive style, or cognitive ability as measured by past performance (Park & Lee, 
2004; Pashler, McDaniel, Rohrer, & Bjork, 2008).  With regard to there being learning benefits 
from adapting content on the basis of learning style, Pashler et al. (2008) described the evidence 
as unconvincing, despite the popularity of the idea, noting results that flatly contradicted the 
presumed benefits.  With regard to adapting on the basis of cognitive ability as measured by past 
performance, Pashler et al. noted some evidence that low performers tended to do better in 
highly structured learning environments (one that provides explicit instructions and guidance) 
compared to less structured learning environments (one that provides little guidance), whereas 
the reverse was true for high performers.  However, this was not universally the case and high 
performers tended to remain high performers regardless of the instructional strategy.  Finally, 
with respect to cognitive style, Pashler et al. concluded there is modest evidence that adapting 
based on personality style produces learning benefits.  However, the precise instructional 
conditions under which this occurs is not entirely clear.  Overall, the ATI evidence involves a 
mix of findings, coming from research that varies on multiple dimensions (e.g., domain, 
instructional strategies, measures of aptitude, and outcome measures). 
 

Far less research has been done on Adapting During, thus it benefits are unclear.  As 
already mentioned, Tseng et al. (2008) found that adjusting topic difficulty up or down according 
to prior module performance led to better learning outcomes than keeping difficulty level 
constant at the middle level; however, they combined this technique with Micro-sequencing 
Level II, Supplemental Remediation Levels.  The comparison condition did not receive this 
treatment so it is impossible to determine the relative contribution of the two adaptive procedures 
to learning outcome improvement.  In general, adapting the level of challenge to student ability 
based on past performance is aligned with educational theory (Sweller, 1988; Vygotsky, 1978).  
Adapting During, by increasing challenge levels for high performing students may enable them 
to reach a higher level of expertise or sophistication, compared to not adapting.  On the other 
hand without adapting, these high performers may complete the content in a faster amount of 
time.  Therefore, the benefits of adapting for high performers depend on the goals: speed vs. 
level of attainment.  Adapting During (by decreasing challenge levels for low performing 
student) may enable them to master a topic without remediation, which may improve motivation 
and speed to complete the course overall. 
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Sequencing vs. Branching 

 
Readers familiar with designing IMI (or taking IMI courses) will notice that FIT does not 

attempt to exhaustively describe IMI varieties.  Rather, FIT is specifically concerned with the 
adaptive instructional decisions that could be made when designing IMI.  Nevertheless, in order 
to avoid confusion, this section highlights certain IMI sequencing decisions that bear superficial 
resemblance to micro-sequencing and explains how they are different.  We will consider two 
examples in particular.  The first concerns student choice in the sequence of content within a 
lesson and the second concerns branching scenarios.  

 
Student control of sequencing within a lesson or module.  Figure 7 illustrates a form 

of IMI that the authors have encountered frequently during required training.  The figure is 
meant to represent a situation in which the student is directed to select a widget on the current 
screen to branch off and learn about a particular subtopic or to do a particular activity (e.g., find 
the information assurance problems in a simulated office).  The student can select the widgets (A 
– D) in any order.  In some versions, selection of A - D may be optional.  In other versions, 
selection of each might be required before progression to the next topic is allowed.  This type of 
sequencing is not a form of FIT micro-sequencing, because it has nothing to do with 
remediation.  Rather, it provides the student a degree of choice in how they navigate the content.  
When choice of A – D is optional, this type of sequencing is most similar to Level I Support 
(fixed sources of information where student initiates access).  When choice of A – D is required, 
it is most akin to Level I Macro-sequencing (student choice or hybrid choice/fixed), but 
occurring within a module.  As already described, macro-sequencing can occur at different levels 
of granularity, and we therefore see this example as macro-sequencing within a lesson. 

 
Branching scenarios.  Another form of branching within a lesson is the so-called 

branching scenario, often associated with Level 3 IMI (TRADOC, 2010).  Branching scenarios 
require students to apply knowledge in the context of a mission, an unfolding story, or problem.  
The student is presented with an initial situation, and then is required to make a decision about 
some action from a set of options.  Depending on the choice selected, what happens next will be 
different.  For example in one Army branching scenario for training unit leaders, Danger Close, 
the student takes on the role of a new platoon leader, and makes decisions about how to interact 
with his troops and his platoon sergeant, while preparing for and subsequently going on 
deployment.  If the student makes poor choices, the platoon suffers a number of serious adverse 
outcomes during the deployment and even after its return due to manageable problems that were 
not handled effectively.  At certain points, students can go back and review their decisions and 
receive feedback about factors to consider for each situation.  This training system uses high 
quality video to immerse the student in the story; however, branching scenarios need not have 
such sophisticated media.  An explanation of each situation, the decision to be made, and the 
options to choose from are all that is required.  Much of the art in creating these scenarios is in 
deciding a coherent branching structure that is manageable.  Figure 8 illustrates one possible 
branching structure, and how it can rapidly become complex even with only three choices per 
situation. 
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Figure 7.  Schematic illustration of student control over sequencing during a lesson. Selection of 
A, B, C, or D leads to more content.  The student is returned to the choice screen upon 
completion of each branch.  Students can choose A, B, C, or D in any order.  If selection of each 
is mandatory, the “NEXT” arrow will be disabled until all have been chosen. 

 
Figure 8.  Schematic illustration of a notional branching scenario with three options at each 
decision point.  The story path depends on which option (black square) is selected at each 
situation.  Students can reach a successful conclusion in as little as three decisions (the A-path); 
but also have several routes to failure (F’s). 

The sequence of situations that a student encounters in a branching scenario is not a form 
of adaptation, as characterized by FIT.  This is because the student’s actions affect the sequence 
of events.  Each situation that arises from the previous decision may provide implicit feedback 
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about whether the prior decision was good or poor by the very nature of the ensuing situation; 
however, that feedback is implicit (it does not provide explicit information about the goodness of 
the decision).  Likewise the next situation is not a form of remediation, so this is not micro-
sequencing.  The point being made is that a branching scenario, in and of itself, is not a type of 
instructional adaptation, but rather a form of interactivity.  The branching scenario can be 
combined with adaptive corrective feedback and support to promote learning. 

 
THE RELATION BETWEEN FIT AND IMI 

 
FIT is not meant to be a replacement for the IMI Levels rubric (TRADOC, 2010).  

Rather, it is meant to make more explicit the ways that instructional adaptation can be 
implemented in IMI applications.  In this section, each IMI level is examined, and considerations 
for selecting FIT levels for feedback, support, micro-sequencing, and macro-sequencing are 
discussed.  Here, we use the description of IMI Levels as found in TRADOC (2010). 

 
IMI Level One – Passive 

 
The learner acts solely as a receiver of information.  

• Capable of computer generated multimedia presentations of intellectual skills 
(facts, rules, or procedures).  

• Capable of showing a procedure with computer-generated multimedia 
explanations of equipment operations.  

• Used primarily to introduce knowledge, including ideas, concepts, and processes. 
• Information is generally provided in a linear format (one idea after another).  
• Minimal interactivity is incorporated in the form of text, navigational icons, static 

graphics (e.g., photos, charts, tables) and illustrations, learner-initiated 
animations, and pop-ins and hyperlinks. 

 
Assuming there is no assessment in Level One IMI, there is no opportunity to adapt on 

the basis of student performance.  Therefore, feedback does not apply.  Likewise there is no need 
for micro-sequencing, because there is no assessment of mastery.  Various macro-sequencing 
approaches may apply.  For example, students may be permitted control over the sequencing of 
modules (Level I macro-sequencing), or multiple versions may be designed for people in 
different roles or agencies (Level III macro-sequencing).  The only type of support might be 
Level I (fixed sources of information), such as a glossary, or hyperlinks to more information. 

 
IMI Level Two – Limited Participation 

 
The learner recalls information and responds to instructional cues. 

• Used to introduce simple operational and maintenance guidelines and procedures. 
• Moderate interactivity is incorporated in the form of learner-initiated animations, 

interactive graphics, activities, scenarios, and assessments (practices, knowledge 
checks, and tests). 

• Interactions force learners to make decisions related to material. 
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• This level has the capability of providing drill and practice, providing feedback on 
learner responses, emulating simple psychomotor performance, and emulating 
simple equipment operation in response to learner action. 

• This level can be used for computer evaluation of intellectual skills using 
computer-based predictive and performance test items. 

• Immediate or delayed feedback guides the learner to see the consequences and 
components of his/her performance. 

 
Assessments are included in Level Two IMI, thus all aspects of FIT are applicable.  The 

above description already alludes to the use of feedback, and its importance in guiding the 
learner to correct performance.  We recommend FIT Level III feedback (error-sensitive 
feedback) as the best way of providing corrective feedback in the context of Level Two IMI.  
This helps the student understand not only what the correct answer or response was, but also why 
his or her answer was not correct.  Especially for checks on learning during the course of the IMI 
session, they are most useful when students can learn from them to see where their knowledge is 
incomplete or flawed.  Solutions requiring multiple steps should provide step-based feedback, 
not merely feedback on whether the final solution is correct or not.  For example, in a 
“matching” exercise, where the student is asked to match terms and definitions, or match other 
types of items, it would be more helpful to illustrate which matches are correct or incorrect, 
rather than whether the whole pattern is correct or not.  Also, showing the correct solution, 
without also displaying the student’s answer, may make it difficult for the student to see where 
he or she went wrong. 

 
Depending on the nature of the exercises or assessments the student is asked to complete, 

instructional support may be beneficial.  It is likely most useful in the practice of multi-step 
procedures, or problems requiring a series of reasoned out steps (as opposed memorization, or 
learning of facts).  For example, if you want a student to memorize that 3 + 3 = 6, support in 
addition to error-sensitive feedback might not be useful; however, if you want the student to 
understand why 3 + 3 = 6, then support can be used to facilitate the reasoning process (for 
example, by presenting graphical props).  Therefore, a decision about whether to include support 
depends on the nature of the learning activities.  Typically, support should be included to assist 
the student at arriving at an answer his or herself, and may depend on an understanding of what 
the student already knows to be effective. 

 
Many Level 2 IMI applications require some criterion performance on a posttest (e.g., 

80%) in order to receive certification.  As previously mentioned, recycling (FIT micro-
sequencing Level 0) may not be effective unless the source of error is mere forgetting.  If lack of 
comprehension is the source of error, just repeating the same content again may not be sufficient 
to repair the error.  Therefore, at least supplemental remediation (FIT micro-sequencing Level I) 
is recommended.  Recall that for this technique, there is additional content available, which 
explains content in an alternate way or provides additional practice.  Micro-sequencing Level II 
(supplemental remediation levels where there are multiple versions of supplemental materials) 
and Level III (adaptive content where the supplemental content is specifically tailored to the 
student’s pattern of deficiency), are also effective methods of remediation; however, it is not 
clear whether they are sufficiently more effective than Level I to justify the extra time and 
resources required to implement them.  Empirical evidence on this is simply too sparse to draw 
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such conclusions.  Level III (adaptive content) is akin to what ITS tend to do when selecting 
problems for students to work on next (VanLehn’s 2006 outer loop and as in the example in 
Tables 4 and 5).  At issue is the return on investment for creating adaptive content vs. just 
providing more problems that cover the learning objectives without specific tailoring. 

 
Level 2 IMI presents several opportunities for macro-sequencing.  The Army Learning 

Concept 2015 (TRADOC, 2011) recommends tailoring learning to the individual learner’s 
experience and competence level based on the results of a pretest or other assessment.  Pretests 
can be used to allow learners to test-out of instruction they have already mastered, assuming that 
the pretest is valid and reliable (see TRADOC, 2011, page 21).  Besides just allowing learners to 
skip content, however, knowledge about learner competence (and needs) can also be used to 
tailor content to their role or aptitude (macro-sequencing Level III, Adapted Ahead).  If multiple 
versions of the same content are available (e.g., Basic, Intermediate, Advanced), and the course 
consists of multiple modules, both selection of the remediation version (micro-sequencing Level 
II, supplemental remediation levels) and selection of the level of the next module (macro-
sequencing, Level IV, Adapted During) can be determined on the basis of posttest performance.  
Whether to use test-out vs. higher levels of macro-sequencing really depends on the instructional 
goals.  The main purpose of test-out is to save time, whereas the main purpose of Adapting 
Ahead or During is to better match learner goals, interests, needs, or competence.  

 
IMI Level Three – Complex Participation 

 
The learner applies information to scenarios and interacts with simulations. 

• This level is used to present more complex operational and maintenance 
procedures; also interpersonal interaction skills. 

• Information is often non-linear. 
• Moderate to high interactivity is incorporated in the form of complex interactive 

graphics including simulations and decision-based branched scenarios. 
• Highly realistic scenario and equipment simulations fully involve the learner in 

near, part and whole task performance. 
• After action feedback guides the learner to fully understand the consequences and 

components of adequate and inadequate performance. 
• Feedback is based on tracking of several responses. 
• This level is capable of providing complex branching paths based on learner 

selections and responses. 
• This level is capable of evaluating learner intellectual skills and performance 

using computer-based performance and predictive test items. 
• Computer evaluation of learner procedural performance includes the capability to 

generate time and error scores for performance test items. 
 
All of the comments about feedback and support regarding Level 2 IMI also apply to 

Level 3 IMI.  In particular, IMI Level 3 typically requires the learner to perform multi-step 
problem solving or decision making, and should be accompanied by step-based error-sensitive 
feedback.  In the case of a branching scenario, this feedback should be delayed so as not to 
disrupt the narrative flow of the scenario, but not delayed too long, such that the student has 
difficulty remembering what ensued (Munro, Fehling, Towne, 1985; Salas, Burke, & Cannon-
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Bowers, 2000; Schmidt & Bjork, 1992).  The after action review should include the ability for 
the student to reflect on their prior decisions.  It may also allow the student to “rewind” the 
scenario and choose different decisions. 

 
Level 3 IMI typically involves assessing reasoning skills.  Therefore, provision of support 

could be considered, but more research is required to understand the effectiveness of hints in the 
context of story-based scenarios.  Level 3 IMI applications typically assume the learner has 
received some kind of didactic instruction already; but if not, then support may be especially 
useful.  For example, the instructional application BiLat (Durlach, Wansbury, & Wilkinson, 
2008; Kim, Hill, Durlach, Lane, Forbell, Core, Marsella, Pynadath, & Hart, 2009), a game-based 
simulation and tutoring system that trains cultural awareness and bilateral negotiation skills, 
depends on learners having been taught the principles of win-win negotiation.  If they have not, 
the hints provided by the automated coach in that application can be particularly critical to a 
student making any progress in a negotiation scenario.  FIT Level I support (fixed hints on 
request), might be designed to orient student decision making with regard to the important 
factors to consider (e.g., a hint may say “you should try to build rapport”).  FIT Level II support 
(locally adaptive) could be applied by tailoring support based on the student’s just prior input or 
decision (assuming it is relevant to the present one).  For example, if the last decision was a poor 
one, then the hint might be more directive (e.g., “You should ask if he follows soccer”).  BiLat’s 
hints work in this way, becoming increasingly concrete if it appears that the student is 
floundering.  Context aware support (FIT Levels III and IV) can be used, but is technically 
difficult to implement.  It is not clear from evidence if these levels are justified by this extra 
effort. 

 
Within the context of Level 3 IMI, micro-sequencing can be implemented in several 

ways.  Recycling would constitute the opportunity for the student to do the same scenario again.  
This may be a more appropriate method of remediation in Level 3 IMI, than Level 2, because the 
student will experience a different branch of the scenario by making different decisions, 
compared to their first time through.  Therefore in Level 3, recycling is not equivalent to mere 
repetition. BiLat, for example, uses recycling, in the sense that students have repeated meetings 
with the same simulated character until they meet their negotiation objectives with that character.  
BiLat remembers the outcome of the prior meeting, so that negotiation points already 
accomplished are retained, and any level of trust (or mistrust) built up with the simulated 
character from prior meetings is carried into the next scenario.  Whether it makes sense to carry 
over the effects like this depends on the nature of the training. 

 
Level 3 IMI applications represent an opportunity to put knowledge into practice, but 

students lacking the knowledge may struggle.  One way of conveying that knowledge is through 
a worked example.  In a worked example (or demonstration), the solution to a problem is 
displayed, with accompanying explanation of the rationale behind each decision or step.  For 
BiLat, an introductory video was made, which not only explains the principles of win-win 
negotiation, but also presents negotiation scenarios: one that goes badly (with explanation as to 
why), and one that goes well (again with explanation).  Depending on the student’s prior 
knowledge, such worked examples can be used either as introduction or as remediation.  An 
intermediate form is a worked example in which the student is asked to supply the rationale (e.g., 
from a menu perhaps).  Students might be required to adequately explain why steps in a worked 
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example were correct or not, prior to taking a stab at solving a scenario themselves.  If actual 
decision making is contingent on correctly explaining an example first, this would be an example 
of Level III micro-sequencing (adaptive content).  Another version of Level III micro-
sequencing would be selecting particular scenario dilemmas based on knowledge of the student’s 
strengths and weaknesses in applying knowledge in the content domain.  Of course, all this 
requires extra content over simple recycling, but little evidence exists regarding the payoff for 
the extra effort. 

 
Any of the macro-sequencing levels of FIT can be applied to Level 3 IMI.  As an 

example, BiLat uses student choice (Level II), in that the student can do the multiple scenarios 
available in any order they choose.  An example of Level III (Adapted Ahead) would be if some 
scenarios were set in one cultural context (e.g., Iraq), whereas others were set in a different 
cultural context (e.g., Haiti).  Soldiers might then do the practice negotiation most relevant to an 
expected deployment. 

 
IMI Level Four – Real-time Participation 

 
The learner engages in a life-like set of complex cues and responses. 

• This level is used to simulate highly complex operational and maintenance 
procedures that often support certification.  

• Maximum flexibility and multi-level branching allow a high degree of 
interactivity in the form of simulator and gaming environments. 

• This level is capable of real-time simulation of performance in the operational 
setting and after action and natural consequences are given based on performance. 

• This level incorporates artificial intelligence components and employs state-of-
the-art technology for simulation and communication. 

• This level can be used for computer evaluation of learner performance and 
intellectual skills using computer-based predictive and performance test items and 
the capability to generate time and error scores for performance test items. 

• This level is often found in games with multiple players, computer-generated 
team players, and/or simulating decision-making incorporating multiple tasks. 

 
All of the comments for Level 3 IMI apply to Level 4.  Similar to Level 3, Level 4 

assumes the learner already possesses content knowledge, and the exercise is an opportunity to 
put that knowledge into practice.  Micro-sequencing can be used as remediation when the 
assumed knowledge appears to be insufficient, either through the use of worked examples with 
explanation, or through the presentation of supplemental didactic materials intended to reinforce 
the required knowledge.  This remediation could be made adaptive (Level III micro-sequencing) 
by tailoring the remedial content to the specific knowledge components on which the student is 
the weakest.  As in the example in Figure 6, real-time adaptation (micro-sequencing Level IV) 
can be applied to adjust the level of challenge of a scenario in real time, by making the scenario 
more or less challenging, as determined by student performance.  This is akin to “leveling” in 
games, such that the level of challenge automatically increases once the player demonstrates 
proficiency at the current level.  Different from typical games, however, the level of challenge 
might also decrease automatically, if the student demonstrates an inability to cope with the 
current level. 
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SUMMARY 
 
When designing instructional technology, the designer needs to consider how learning 

effectiveness can be improved over one-size-fits all methods, by applying adaptive techniques 
that fit within the available time and resources.  The primary objective for developing FIT is to 
illustrate, in a systematic fashion, the specific ways in which instruction can be made adaptive.  
While ITS are considered the epitome of adaptive training technology, it is important to realize 
that adaptive tactics exist that are easier and less resource-intensive to implement. Table 8 
presents the typical adaptive behaviors of ITS in terms of FIT, and our recommendations for the 
application of the FIT to different levels of IMI.  It can be seen that regardless of IMI level, we 
recommend routine use of error sensitive feedback (FIT corrective feedback level III); the 
evidence regarding its benefits are fairly clear, and it is relatively straightforward to implement.  
With regard to the other factors, the evidence is less clear, and so we present a range of 
potentially beneficial levels.  With regard to macro-sequencing, it should be remembered that 
Levels I – IV are not mutually exclusive, and can be combined in various ways.  Table 9 displays 
all the FIT levels in one place.  Along with Table 8, FIT can be used as guidance when designing 
or procuring instructional technology.  

 
Table 8. Typical FIT Levels Associated With ITS, and Recommended for Different Levels of IMI 

 
FIT Levels ITS Level 1 IMI Level 2 IMI Level 3 IMI Level 4 IMI 

Corrective 
Feedback 

III - IV NA* III III III 

Support 
 

I - IV I 0 - III 0 - III 0 - III 

Micro-
sequencing 

III NA* I - II 0 - III 0 - IV 

Macro-
sequencing 

NA* 0 - III 0 - IV 0 - IV 0 - IV 

* Not Applicable 
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Table 9. FIT Summary Table 

 
CORRECTIVE FEEDBACK 
Level 0 No explicit item-level feedback – only summary score  
Level I Minimal feedback (item accuracy information) 
Level II Correct answer or explanation of correct answer  
Level III Error-sensitive feedback 
Level IV Context-aware feedback  

 
SUPPORT 
Level 0 No support  
Level I Fixed hints on request (problem determined); other 

fixed sources of information (e.g., glossary) where 
student initiates access 

Level II Locally-adaptive hints, prompts, or pumps 
a. on request 
b. triggered 

Level III Context-aware adaptive hints, prompts, or pumps (True 
Scaffolding) 

a. on request 
b. triggered 

Level IV Same as Level III, with interactive dialog 
 
MICRO-SEQUENCING 
Level 0 Recycling 
Level I Supplemental Remediation  
Level II Supplemental Remediation Levels  
Level III Adaptive Content 
Level IV Real-time Adaptation 

 
MACRO-SEQUENCING 
Level 0 Fixed sequence (one version only) 
Level I Student choice or hybrid choice/fixed  
Level II Test-out 
Level III Adapted Ahead (multiple versions) 
Level IV Adapted During (multiple versions) 
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Another use of FIT can be to guide future research.  We have already mentioned that 

evidence comparing the effectiveness of different FIT levels is lacking.  This is because research 
has tended to examine the impact of adaptive interventions in a less than systematic way 
(varying multiple factors at a time).  For example, while ITS have been shown to produce better 
learning outcomes than other less sophisticated methods of instructional technology, they tend to 
combine the use of error-sensitive feedback and adaptive content micro-sequencing.  The 
effectiveness of ITS has been compared to methods that do not employ these techniques.  
Consequently, it is not possible to tell whether the relatively superior effectiveness of ITS is due 
to the feedback method or the micro-sequencing method (or both).  We suggest that systematic 
research holding the method of feedback constant and varying the level of micro-sequencing is 
called for.  It may be that error-sensitive feedback combined with supplemental remediation or 
supplemental remediation levels can be just as effective, and easier to implement, than adaptive 
content.  As another example, Mitrovic et al. (2013) demonstrated that adaptive positive and 
negative feedback messages produced faster learning compared to adaptive negative feedback 
only; their finding demonstrates that positive feedback can be beneficial, but does not require the 
interpretation that the positive feedback needs to be adaptive.  This is because they did not 
include a condition with non-adaptive positive feedback. 
  

In conclusion, FIT is a framework that describes the types of instructional decisions that 
an adaptive learning environment can make.  For each instruction decision, FIT lays out a 
continuum of adaptation that roughly corresponds to the level of sophistication required to 
support those decisions.  Some levels require adaptive tactics that are easier and less resource-
intensive to implement, others require more complex student data to allow for contextually 
adaptive hints, prompts, and feedback and performance adaptive remediation and sequencing.  
These adaptive tactics are more complex and resource-intensive to implement.  One aim of FIT 
is to help developers of training technology understand the range of possibilities in designing 
adaptive learning environments.  Another aim of FIT is to guide future research.  We 
acknowledge that FIT does not address all the types of decisions a system could make; however, 
it does describe different possibilities for implementing adaptive decisions and can be used to 
help designers select the most effective options in keeping with their resources.  Therefore, this 
framework should help Army Leadership and training developers make better decisions when 
designing adaptive learning environments. 
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ACRONYMS 

 
 

 
AAR After Action Review 

 
ALC 2015 Army Learning Concept 2015 

 
ATI Aptitude Treatment Interaction  

 
DOD Department of Defense 

 
ELO Enabling Learning Objective 

 
FIT Framework for Instructional Technology 

 
IMI Interactive Multimedia Instruction 

 
ITS Intelligent Tutoring System(s) 

 
TLO Terminal Learning Objective 

 
TRADOC Training and Doctrine Command 

 
VCAT Virtual Cultural Awareness Trainer 

 
 

 


	Department of the Army
	MICHELLE SAMS, Ph.D.
	Director
	NOTICES

	INTRODUCTION
	Adaptive Instruction
	Macro and Micro Adaptation
	Inner-Loop and Outer-Loop
	Granularity and Steps

	THE FRAMEWORK FOR INSTRUCTIONAL TECHNOLOGY
	Corrective Feedback
	Support
	Micro-sequencing
	Macro-sequencing
	Sequencing vs. Branching

	THE RELATION BETWEEN FIT AND IMI
	IMI Level One – Passive
	IMI Level Two – Limited Participation
	IMI Level Three – Complex Participation
	IMI Level Four – Real-time Participation

	SUMMARY
	ACRONYMS

